7、已知三个 double 类型的变量 a 、 b 和 theta 分别表示一个三角形的两条边长及二者的夹角(弧度),则下列哪个表达式可以计算这个三角形的周长?( )。
8、在有 n 个元素的二叉排序树中进行查找,其最好、最差时间复杂度分别为( )。
9、如下图所示,半径为 r 、圆心角为 t (弧度)的扇形,下面哪个表达式能够求出顶部阴影部分的面积?()。【有截图】
10、下面程序的时间复杂度为( )。
int fib(int n) {
if (n <= 1)
return 1;
return fib(n - 1) + fib(n - 2);
}
11、下面程序的时间复杂度为( )。
int choose(int n, int m) {
if (m == 0 || m == n)
return 1;
return choose(n - 1, m - 1) + choose(n - 1, m);
}
12、下面程序的时间复杂度为( )。
int primes[MAXP], num = 0;
bool isPrime[MAXN] = {false};
void sieve() {
for (int n = 2; n <= MAXN; n++) {
if (!isPrime[n])
primes[num++] = n;
for (int i = 0; i < num && n * primes[i] <= MAXN; i++) {
isPrime[n * primes[i]] = true;
if (n % primes[i] == 0)
break;
}
}
}
13、下面程序的输出为( )。
#include <iostream>
using namespace std;
int a[10][10];
int main() {
int m = 5, n = 4;
for (int x = 0; x <= m; x++)
a[x][0] = 1;
for (int y = 1; y <= n; y++)
a[0][y] = 1;
for (int x = 1; x <= m; x++)
for (int y = 1; y <= n; y++)
a[x][y] = a[x - 1][y] + a[x][y - 1];
cout << a[m][n] << endl;
return 0;
}
14、下面程序的输出为( )。
#include <iostream>
using namespace std;
int main() {
int cnt = 0;
for (int x = 0; x <= 10; x++)
for (int y = 0; y <= 10; y++)
for (int z = 0; z <= 10; z++)
if (x + y + z == 15)
cnt++;
cout << cnt << endl;
return 0;
}